惯性矩 发表于 2018-5-23 15:29:29

积分困惑(三)

看书过程中遇到一个问题,向各位大侠请教;(麦克劳林级数中arctanx展开要用到)

第一个等式易理解,积分后相减即可得到arctanx;其他两个怎么解释,谢谢

惯性矩 发表于 2018-5-23 15:34:58

刚写完就懂了,脑走抽了:Q

惯性矩 发表于 2018-5-23 16:17:40

本帖最后由 惯性矩 于 2018-5-23 16:24 编辑

根据这种方法得出的在(-1,1)收敛,还需额外证明在±1也收敛,根据比值法得出收敛区间在[-1,1],综合收敛区间为[-1,1]

数学有啥用 发表于 2018-5-23 16:49:39

本帖最后由 数学有啥用 于 2018-5-23 16:51 编辑

积分上限和积分变量不应该总同一个字母,会混淆
这种书太差劲,同类型的书,看看托马斯微积分就够了


数学有啥用 发表于 2018-5-23 17:23:09

还有,没有必要分情况讨论,把问题搞复杂了。
只要知道1/(1+t^2)在全实数范围的定积分是π就够了,因为被积函数是一个偶函数

惯性矩 发表于 2018-5-24 08:19:05

数学有啥用 发表于 2018-5-23 17:23
还有,没有必要分情况讨论,把问题搞复杂了。
只要知道1/(1+t^2)在全实数范围的定积分是π就够了,因为被积 ...

大侠,你说的那种情况也是对的,只是收敛区间在[-1,1]上的幂级数,下图是根据各个区间推导得的幂级数

页: [1]
查看完整版本: 积分困惑(三)