机械荟萃山庄

 找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
热搜: 活动 交友 discuz
查看: 2346|回复: 2

碳纤维的十六个主要应用领域

[复制链接]

168

主题

5156

帖子

3万

积分

论坛元老

Rank: 8Rank: 8

积分
32285
发表于 2018-4-12 15:01:47 | 显示全部楼层 |阅读模式
碳纤维是最重要的无机高性能纤维,这点是由其材料本性、产业技术复杂性、应用领域重要性和市场规模性等因素决定的,其首个市场化应用是1972年市售的碳纤维增强树脂钓鱼竿。
此后,碳纤维应用快速向以航空航天器主结构材料为代表的高端化发展。
碳纤维最主要的应用形式是作为树脂材料的增强体,所形成的碳纤维增强树脂(CFRP)具有优异的综合性能,其在导弹、空间平台和运载火箭,航空器,先进舰船,轨道交通车辆,电动汽车,卡车,风电叶片,燃料电池,电力电缆,压力容器,铀浓缩超高速离心机,特种管筒,公共基础设施,医疗和工业设备,体育休闲产品,以及时尚生活用具等十六个领域,有着实际和潜在的应用。
CFRP作为导弹、空间平台和运载火箭的关键材料
碳纤维是现代宇航工业的物质基础,具有不可替代性。CFRP被广泛应用于导弹武器、空间平台和运载火箭等航天领域。在导弹武器应用方面,CFRP主要用于制造弹体整流罩、复合支架、仪器舱、诱饵舱和发射筒等主次承力结构部件;在空间平台应用方面,CFRP可确保结构变形小、承载力好、抗辐射、耐老化和空间环境耐受性良好,主要用于制造卫星和空间站的承力筒、蜂窝面板、基板、相机镜筒和抛物面天线等结构部件;在运载火箭应用方面,CFRP主要用于制造箭体整流罩、仪器舱、壳体、级间段、发动机喉衬和喷管等部件。

目前,CFRP在航天器上的应用已日臻成熟,其是实现航天器轻量化、小型化和高性能化不可或缺的关键材料。
CFRP作为航空器的结构材料

在大型先进飞机中,CFRP被广泛用作主承力结构材料。且在近期研制成功的新型飞艇中,CFRP也被用做结构材料。

20世纪70年代中期的石油危机是碳纤维应用于飞机制造的直接原因。为缓解能源危机,当时的美国政府启动了“飞机节能计划(AircraftEnergy Efficiency Program)”。现代飞机机身采用钢、铝、钛等金属和复合材料制成。为节约燃油和提高运营效益,减轻机身质量一直是飞机设计制造技术中的核心挑战之一。而CFRP在飞机机身制造上的成熟应用为减轻飞机机身质量提供了最有效的途径。

例如,以金属材料为主制成的波音767飞机(CFRP用量仅占3%)机身质量为60t,而将CFRP用量提升到50%时,新型波音767飞机机身质量下降到48t,仅此就极大地提升了该型飞机的能源和环境效益。

正在研制的波音777X型飞机和最新投产的波音787型飞机,机身复合材料的用量都达到了50%。波音777X型飞机是波音公司以波音777飞机为基型,正在开发的一种大型双引擎客机,计划首架飞机于2020年交付投入运营。波音777X飞机的主翼由CFRP制成,其翼展长约72m(235英尺),是目前客机中翼展最长的机型之一。
翼展越长,升力越大,因此,波音777X的单座燃油消耗和运营成本都非常有竞争力。
CFRP机翼不仅强度高、柔性好,且末端可折叠,这样多数机场都能满足其宽翼展的停机需求。波音787飞机的主翼和机身等主承力结构都采用日本东丽公司TORAYCA品牌的碳纤维预浸料制造。2005年11月,东丽公司与美国波音公司签署了一项为期10年的协议,为波音787梦想号(Boeing 787 Dreamliner)飞机提供碳纤维预浸料。2015年11月,东丽公司宣布与美国波音公司达成综合协议,将为波音公司生产的787和777X两型飞机提供价值约110亿美元的碳纤维预浸料
CFRP作为先进舰船船体结构

CFRP对提高舰船的结构、能耗和机动性能等非常明显。

瑞典在船艇制造技术方面有着传统优势,其夹层复合材料技术居世界一流水平,较早便采用CFRP技术研制军用舰船。2000年6月下水的瑞典海军维斯比号护卫舰(Stealth Visby)是世界第一艘在舰体结构中采用CFRP的海军舰艇。该舰长73.0 m、宽10.4 m、吃水深度2.4 m、排水量600 t;舰体采用CFRP夹层结构,具有高强度、高硬度、低质量、耐冲击、低雷达和磁场信号,以及吸收电磁波等优异性能。
CFRP作为轨道交通车辆的车体结构

轻量化是减少列车运行能耗的一项关键技术。金属制造的轨道列车,虽车体强度高,但质量大、能耗高。

CFRP是新一代高速轨道列车车体选材的重点,它不仅可使轨道列车车体轻量化,还可以改进高速运行性能、降低能耗、减轻环境污染、增强安全性。当前,CFRP在轨道车辆领域的应用趋势:从车箱内饰、车内设备等非承载结构零件向车体、构架等承载构件扩展;从裙板、导流罩等零部件向顶盖、司机室、整车车体等大型结构发展;以金属与复合材料混杂结构为主,CFRP用量大幅提高。

由于车载设备几乎没有减重空间,因此,车身和内部装饰就成为了轻量化的重点对象。

2000年,法国国营铁路公司(SNCF)采用碳纤维复合材料研制出双层 TGV型挂车;韩国铁道科学研究院(KRRI)以此为基础,研制出运行速度为180 km/h 的TTX型摆式列车车体,其采用不锈钢增强骨架,侧墙体和顶盖采用铝蜂窝夹芯,蒙皮采用CFRP构成的三明治结构,车体外壳总质量比铝合金结构降低了40%,且车体强度、疲劳强度、防火安全性、动态特性等性能良好,并于2010年投入商业化运营。

2011年,韩国铁道科学研究院(KRRI)研制出CFRP地铁转向架构架,质量为 635 kg,比钢质构架的质量减少约30%。日本铁道综合技术研究所(JRTI)与东日本客运铁道公司(East Japan RailwayCompany)联合研制的CFRP高速列车车顶,使每节车箱减轻300~500 kg。2014 年9月,日本川崎重工(Kawasaki)研制的 CFRP 构架边梁,其质量比金属梁减少约40%。
CFRP作为电动汽车的车体结构

英国材料系统实验室关于材料对汽车轻量化和降低生产成本的研究表明,汽车质量每减轻10%,油耗可降低6%。现有材料中,CFRP的轻量化效果最好;加之,汽车设计和复合材料技术的快速发展。这些都使得CFRP在汽车制造领域的应用速度远远超出人们的预期。

BMW公司BMWi型车的推出引领了这一潮流。2008年,BMW公司在慕尼黑召开会议,目的是让城市交通技术发生彻底的变革,其建立了一个“i计划”的智库,唯一的任务就是“忘掉以前所做的一切,重新思考一切”。2009年,该智库形成了一个全新的节能概念——“BMW有效动力愿景”,奠定了BMW公司后续研究的思想基础,它要求对车身和驱动系统进行专门的设计,以达到全新的节能性,而此前的想法都是将已有的节能技术集成到既有的模板中。2011年,BMW公司确立了“天生电动(Born Electric)技术”,创立了BMWi品牌,其让人们在日常驾驶出行中用上了全电动能源;同年,第一款全电动BMWi3概念车实现技术演示。
CFRP作为新概念货运卡车的车体结构

世界零售业巨头沃尔玛(Walmart)公司在28个国家的63个区域拥有11500家门店。其在美国拥有1支由近6000辆货车组成的卡车车队,它们会将产品送至遍布于美国的数千家门店。该车队为保持持续的生存能力和效率,一直以“行驶里程更少,运输量更多”为目标,依靠提高司机驾驶技术、采用先进牵引挂车、改进过程与系统筹划等措施,实现2007~2015年间车队行驶超480万km,运送集装箱数超8亿,运输效率较2005年提高84.2%。

其中,牵引挂车的性能对实现“多拉少跑”的目标关系重大,故沃尔玛公司投入巨资开展“沃尔玛先进车辆体验”的新概念卡车研究计划。

已研制的新概念卡车集成了空气动力学、微型涡轮混合动力驱动系统、电气化、先进控制系统,以及CFRP车体等前沿技术。主要技术创新:先进的空气动力学设计,整体造型优雅,气动性能较现行的Model 386型卡车提高20%;微型涡轮混合电力驱动系统清洁、高效、节油;司机座位设计于驾驶室中央,具有180°的视野;电子仪表盘可提供定制化的量程和性能数据;滑动型车门和折叠型台阶提高了安全和安保性能;空间宽敞的驾驶室设有带折叠床的可伸缩卧室。

牵引挂车的整个车身采用CFRP制成,顶部和侧墙均采用16.2 m(53英尺)长的单块板材,其优异的力学性能可确保车体的结构强度;采用先进黏结剂黏合,最大限度地减少了铆钉数量;凸鼻形的造型设计可在充分保证载货容量的前提下,有效提高气动性能;低剖面LED灯光更节能、耐用。

评分

参与人数 1威望 +3 收起 理由
Architect + 3

查看全部评分

回复

使用道具 举报

168

主题

5156

帖子

3万

积分

论坛元老

Rank: 8Rank: 8

积分
32285
 楼主| 发表于 2018-4-12 15:02:26 | 显示全部楼层
CFRP作为风电叶片的增强结构

风能是最具成本优势的可再生能源,风能发电在近10年来已取得飞速发展。截至2016年5月,全球风电装机容量已近4270亿MW。并据预测,2020年前,新增风电装机能力将按25%的年增长率递增;到2020年,风力发电量将占世界总发电量的11.81%。

为提高风力发电机的风能转换效率,增大单机容量和减轻单位千瓦质量是关键。20世纪90年代初期,风电机组单机容量仅为500kW,而如今,单机容量10MW的海上风力发电机组都已产品化。风电叶片是风电机组中有效捕获风能的关键部件,叶片长度 随风电机组单机容量的提高而不断增长。根据顶旋理论,为获得更大的发电能力,风力发电机需安装更大的叶片。1990年,叶轮直径(Rotor Diameter)为25m;2010年,叶轮直径已达120m。2011年,Kaj Lindvig预测海上风机的叶轮直径2015年将达135 m,2020年将达到160m。

但这一预测很快就被突破,美国超导公司(AmericanSuperconductor Corp.)2016年已投入市场销售的10 MW海上风力发电机的叶轮直径就已达190 m。但因叶片长度的问题,业界就是否需发展10MW及以上能力的风力发电机存有争议,但主流观点是需要发展的。西门子风电(Siemens Wind Power)公司首席技术官认为:面积与体积的关系的科学定律将最终限制叶轮直径的不断增长,但目前还未达到极限,制造10MW风力发电机在技术上是可行的;且从运营效益上看,降低每兆瓦时的运营成本,必须提高风力发电机的容量。

叶轮直径的增加对叶片的质量及抗拉强力提出了更轻、更高的要求。CFRP是制造大型叶片的关键材料,其可弥补玻璃纤维复合材料(GFRP)的性能不足。但长期以来,出于成本因素,CFRP在叶片制造中只被用于樑帽、叶根、叶尖和蒙皮等关键部位。近年,随着碳纤维价格稳中有降,加之叶片长度进一步加长,CFRP的应用部位增加,用量也有较大提升。2014年,中材科技风电叶片股份有限公司成功研制出国内最长的6MW风机叶片,该叶片全长77.7m、质量28t,其中主梁由5t的国产CFRP制成。如采用GFRP设计,则该叶片质量将约达36t。
碳纤维纸作为燃料电池的电极气体扩散材料
碳纤维纸作为一种高性能复合材料,是制造燃料电池质子交换膜电极中气体扩散层必不可少的多孔扩散材料。气体扩散层(GDL)构成气体从流动槽扩散到催化剂层的通道,是燃料电池的心脏,是膜电极组(MEA)中非常重要的支撑材料,其主要功能是作为连接膜电极组和石墨板的桥梁。气体扩散层可帮助催化剂层外部生成的副产品——水尽快流走,避免积水造成溢流;还可帮助在膜的表面保持一定水份,确保膜的导电率;燃料电池运行过程中,帮助维持热传导;此外,提供足够的力学强度,在吸水扩展时保持膜电极组的结构稳定性。

在质子交换膜燃料电池和直接甲醇燃料电池中,同时使用碳纤维纸和碳纤维布作为气体扩散层的综合效果更好。每辆燃料电池电动汽车约需消耗碳纤维纸100m2(即8kg)。

2016年9月法国阿尔斯通公司发布了其最新研制的全球首辆液氢燃料电池电动火车。该车属阿尔斯通公司Coradia iLint系列的区域型列车,是根据2014年与德国下萨克森州、北莱茵威斯特伐利亚州、巴登符腾堡州及黑森州的公共交通部门签订的一项内部意向而研发的新一代零排放燃料电池动力火车。最新发布的液氢燃料电池电动火车全部采用成熟技术研制,车顶装有氢燃料电池,乘客舱底部装有锂电池、变流器和电动机,它将开辟燃料电池更大的应用市场空间,促进碳纤维纸技术的进一步发展。
CFRP作为电力电缆的芯材
复合材料芯材铝导线(ACCC)以复合材料芯材替代金属芯材,为解决架空线弧垂问题开辟了更有效的技术途径。2002年,基于ACCC专利技术,全球供配电设备技术领先企业——美国CTC公司展开了产品的研发,以期将其投入使用。当时的开发目标是,在不对现有架空线承载塔架做任何变动且不增加现行导线质量或直径的前提下,开发CFRP芯材来承载铝导线,以降低热弧垂、增大塔架距离、承载更大电流、减少线损、提高供电网络可靠性等。

2005年,该公司首次推出商业化的ACCC导线产品,其研制生产的CFRP芯铝导线的强度是同等质量钢芯铝导线的2倍、传输的电流容量是其他芯材铝导线的2倍、线损较其他芯材铝导线降低了25%~40%,其高容、高效和低弧垂等性能远远超越了其他材质芯材铝导线。
经对比,钢芯的直径明显大于CFRP芯的直径,这使得CFRP芯铝导线可多容纳28%的铝导线,从而增大了电流的通过能力。

评分

参与人数 1威望 +3 收起 理由
Architect + 3

查看全部评分

回复 支持 反对

使用道具 举报

168

主题

5156

帖子

3万

积分

论坛元老

Rank: 8Rank: 8

积分
32285
 楼主| 发表于 2018-4-12 15:02:42 | 显示全部楼层
CFRP作为压力容器的缠绕增强材料
高压容器主要用于航空航天器、舰船、车辆等运载工具所需气态或液态燃料的储存,以及消防员、潜水员用正压式空气呼吸器的储气。为了能在有限空间内尽可能多地存储气体,需对气体进行加压,因此,需提高容器的承压能力,对容器进行增强,以确保安全。

20世纪40年代,美国开始武器系统用复合材料增强高压容器的研究。1946年,美国研制出纤维缠绕压力容器;20世纪60年代,又在北极星和土星等型号的固体火箭发动机壳体上采用纤维缠绕技术,实现了结构的轻质高强。1975年,美国开始研制轻质复合材料高压气瓶,采用S-玻纤/环氧、对位芳纶/环氧缠绕技术,制造复合材料增强压力容器。

后来,科学家们纷纷研制出由玻纤、碳化硅纤维、氧化铝纤维、硼纤维、碳纤维、芳纶和PBO纤维等增强的多种先进复合材料。其中,对位芳纶曾大量用于各种航空航天器用压力容器的缠绕增强,后逐渐被碳纤维所取代。20世纪70年代,纤维缠绕金属内衬轻质压力容器被大量用于航天器和武器的动力系统中;20世纪80年代,碳纤维增强无缝铝合金内衬复合压力容器出现,其使压力容器的制造费用更低、质量更轻、可靠性更高。

复合材料增强压力容器具有破裂前先泄漏的疲劳失效模式,提高了安全性。因此,全缠绕复合材料高压容器已在卫星、运载火箭和导弹等航天器中广泛使用。阿波罗(Appolo)登月飞船曾使用的钛合金球形氦气瓶,其容积92L、爆破压力≥47MPa、质量26.8kg;而标准航空航天用钢内衬复合氦气瓶质量20.4kg,铝内衬复合氦气瓶质量11.4kg,无内衬复合气瓶质量仅为6.8kg(相较于钛合金球形氦气瓶质量减少了75%)。

高性能纤维是全缠绕纤维增强复合压力容器的主要增强体。通过对高性能纤维的含量、张力、缠绕轨迹等进行设计和控制,可充分发挥高性能纤维的性能,确保复合压力容器性能均一、稳定,爆破压力离散差小。车用高压Ш型氢气瓶(金属内胆全缠绕)的材料成本中,近70%为增强纤维,其余约30%为内胆和其他材料。

20世纪30年代,意大利率先天然气用做汽车燃料。早期车用气均使用钢质气瓶,其厚重问题始终限制着钢质气瓶的扩大应用。20世纪80年代初,玻璃纤维环向增强铝(或钢)内胆的复合气瓶诞生。由于环向增强复合气瓶的轴向强度欠佳,故其金属内胆依然较厚。为解决此问题,同时对环向和轴向进行增强的全缠绕纤维增强复合气瓶应运而生,其金属内胆的厚度大幅减薄,质量显著减小。

20世纪90年代,以塑料作为内胆的复合气瓶出现。新能源汽车领域,高压气瓶的应用主要是燃料电池动力汽车用高压储氢气瓶,其压力已到达70 MPa。
CFRP作为铀浓缩超高速离心机的高速转子材料
铀浓缩气体离心机技术是核燃料生产的关键,是衡量核技术水平的重要标志。铀浓缩气体离心机具有高真空、高转速、强腐蚀、高马赫数、长寿命、不可维修等特点,其研制涉及机械、电气、力学、材料学、空气动力学、流体力学、计算机应用等多学科的理论和技术,难度非常大。离心机中转子的转速与气体分离效率直接相关。转子转速越高,气体分离效率也越高。因此,确保转子转速在60000r/min以上,是铀浓缩气体离心机最基本的性能要求。而这么高的转速便对转子的材质提出了非常苛刻的要求。金属材质的转子根本无法达到如此高的转速,因为它无法跨越共振频率,金属材质的转子一旦达到共振频率便会碎裂;而CFRP制成的转子则不存在这一问题,其可耐受更高的转速。
CFRP作为特种管筒的增强材料
与压力容器长时间持续耐压不同,枪管、炮管、液压作动筒等特种管筒需在较长时间内高频次地承受和释放高压。由碳纤维缠绕或预浸料包覆增强的此类特殊用途的承压管筒,在减轻自身质量、改进散热、提高精度、延长寿命等方面效果非常明显。

美国普鲁夫实验公司(PROOF Research)是一家总部位于美国蒙大拿州的科技企业,该公司研发了一款CFRP增强枪管。其将先进复合材料技术与热-机械设计原理相融合,并采用了航空专用碳纤维和航天高温树脂,研制出新一代运动用和军用枪馆。与钢质枪管相比,CFRP增强枪管自身质量最高可减小64%,射击精度可达比赛级要求。此外,该公司研制的CFRP增强枪管在设计与制造工艺上适应了碳纤维的纵向(即沿枪管长度方向)热扩散率特性,能更有效地通过枪管壁散热,极大地提高热扩散效率,且枪管能快速冷却,并可在持续开火状态下更长时间地保持射击精确度,是被美国军队唯一验证过的CFRP增强枪管。
因此,早在20世纪80年代,CFRP就已被用于制造铀浓缩气体离心机的高速转子。且随着CFRP技术的进步,CFRP制成的转子可耐受更高的转速,铀浓缩效率大幅提升。
CFRP作为公共基础设施建设用的关键材料
CFRP的力学特性使得其成为了大跨度悬索桥主缆的优选材料。利用悬索桥非线性有限元专用软件BNLAS,研究主跨3500m的CFRP主缆悬索桥模型的静力学和动力学性能最优结构体系,得出:CFRP主缆自身质量应力百分比大幅降低,活载应力百分比提高到13%(钢主缆为7%),结构的竖弯、横弯及扭转基频大幅提高;CFRP主缆安全系数的增加将提高结构的竖向和扭转刚度;增大CFRP主缆的弹性模量可大幅减小活载竖向挠度,提高竖弯和扭转基频。

此外,建筑与民用工程领域是最早将碳纤维用于结构增强的。通过在桥梁等建筑物上铺覆碳纤维织物,可提高水泥结构体的耐用性,以及水泥结构建筑物的抗震性能。

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|小黑屋|手机版|Archiver|机械荟萃山庄 ( 辽ICP备16011317号-1 )

GMT+8, 2024-12-27 11:42 , Processed in 0.093142 second(s), 21 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表