|
商业化的射频EDA软件于上世纪90年代大量的涌现,EDA是计算电磁学和数学分析研究成果计算机化的产物,其集计算电磁学、数学分析、虚拟实验方 法为一体,通过仿真的方法可以预期实验的结果,得到直接直观的数据那么,在众多电磁场EDA软件中,我们如何“透过现象看本质”,知道每种软件的优缺点呢?本文旨在工程描述一些市场主流PCB仿真EDA软件,更为深入的学习可以参考计算电磁学相关资料。
电磁场求解器(Field Solver)以维度来分:2D、2.5D、3D;逼近类型来分:静态、准静态、TEM波和全波。
全波电磁算法
简 单地讲就是求解麦克斯韦方程完整形式的算法。全波算法又分时域和频域算法。有限差分法(FD)、有限积分法(FI)、传输线矩阵法(TLM)、有限元法 (FEM)、边界元法(BEM)、矩量法(MoM)和多层快速多极子法(MLFMM)均属于全波算法。所有的全波算法均需要对仿真区域进行体网格或面网格 分割。前三种方法(FD、FI和TLM法)主要是时域显式算法,且稀疏矩阵,仿真时间与内存均正比于网格数一次方;后四种方法(FEM、BEM、MoM和 MLFMM)均为频域隐式算法。
全波算法又称低频或精确算法,它是求解电磁兼容问题的精确方法。对 于给定的计算机硬件资源,此类方法所能仿真的电尺寸有其上限。一般来说,在没有任何限制条件下,即任意结构任意材料下,TLM和FI能够仿真的电尺寸最 大,其次是FD,再者为FEM,最后是MoM和BEM。若对于金属凸结构而言,MLFMM则是能够仿真电尺寸最大的全波算法。
时域算法的固 有优势在于它非常适用于超宽带仿真。电磁兼容本身就是一个超宽带问题,如国军标GJB151A RE102涉及频段为10kHz直至40GHz六个量级的极宽频带。另外,对于瞬态电磁效应的仿真,如强电磁脉冲照射下线缆线束上所感应起来的瞬态冲击电 压的仿真,采用时域算法是自然、高效、准确的。
维数 | 类型 | 适合结构 | 应用场合 | 特点 | 2D | 准静态 | 横截面在长度方向无变化 | 传输线的RLGC低频建模 | 不适应任意结构,高频精度低 | 2D | 全波 | 横截面在长度方向无变化 | 传输线的RLGC全频建模 | 不适应任意结构 | 2.5D | 横电磁波TEM | 多层平面结构 | 电源地平面结构低频建模 | 当结构是3D时,带有寄生效应;当缺少参考面时,高频段结果不准 | 2.5D | 全波,边界元法,矩量法 | 层叠结构 | 某些片上无源结构,PCB | 对于边缘效应,3D金属和介质精确建模存在计算时间长,消耗内存大等问题 | 3D | 准静态 | 低频 | 连接器和封装的低频建模 | 高频误差大,趋肤效应误差大 | 3D | 全波 | 理论上适合任意结构,只有计算机计算能力足够 | 芯片,封装,电路板,射频微波器件,天线 | 计算时间长,消耗内存大
一般建议16G内存以上 |
维数 | 适用范围 | 举例 | 局限性 | 2D | 求解在XYZ方向有变化的几何结构 | 无限长传输线横截面 | 不能求解Z方向过孔 | 2.5D | 可以解决在3个维度都有变化的结构,但其中一个维度严格限制 | 多层介质结构,PCB | 可求解过孔,但Z方向不能有几何结构变化 | 3D | 可以解决在3个维度任意变化结构 | 任意结构,比如微波射频器件,Bondwire | 耗内存和时间,模型太大或设置不当会造成不收敛 |
典型的2D全波计算方法有:2D边界元法、2D有限 差分法、2D有限元法。
“2.5D solver”的意思是,这个solver使用的是全波公式,公式中包含多层介质中的6个电磁场分量(XYZ方向电场E和XYZ方磁场H),以及2个传导 电流分量(如X和Y方向)。其利用多层介质的全波格林函数,采用矩量法的步骤,将一个3D问题缩减为金属表面问题。
2.5D TEM求解器适合用于结构中以TEM模式为主的情况,即在电磁场传播方向没有电场和磁场分量,工作频率比较低的电源平面对结构符合这一情况。但是,3D效应,共平面设置或缺少参考平面的设计都会降低这种方法的精度。
2.5DBEM/MOM 求解器是一种全波求解器,它基于边界元法或矩量法公式,利用层状介质格林函数来求解,通常假设介质层数无穷大的平面。但是,对于封装和封装-电路板连接处 存在的3D边缘效应,3D几何结构和有限大介质层精度不高。代表软件Ansys Designer,MicroWave Office,IE3D, Feko,Sonnet。
典型的3D全波求解器有:边界元法 (Si9000)、有限差分法(CST、Keysight EMpro/FDTD)和有限元法(Ansys HFSS、Keysight Empro/ FEM)。
基于以上计算方法和行业的代表商业软件有:
Ansys Siwave
是专门最大封装和PCB的信号完整性和电源完整性分析平台,使用电路和全波电磁场的混合求解器,可以完成直流分析,交流分析和电磁辐射分析。SIWAVE使用优化后的三维电磁场有限元求解技术,适合精确快速分析大规模复杂电源,地平面的PCB和封装设计。
Cadence Sigrity
Cadence Sigrity采用多种混合算法,包括电磁场(EM)求解器,传输线(TLM)求解器,电路(SPICE)求解器, 如板间主电磁场采用FEM有限元法(POWER SI)或FDTD时域有限差分法(SPEED2000),传输线采用矩量法,非理想回路和过孔采用局部三维等效法,板边辐射采用边界元法等。
随 着系统数据率进入了Gbps和无线频率进几GHz领域,考虑非均匀互连的不连续性带来的影响变得越来越重要。主要有两类最基本的互连不连续CB上不规 则形状的互连对象,如:过孔、走线拐角、非均匀走线;IC以及PCB之间的互连结构。过去,对电路板上的均匀走线和封装使用静态或准静态场解算器进行建 模。那些尺寸小、不规则形状的对象都采用近似或直接忽略的方式处理,这样的方法对于沿速率相对较慢的信号的建模与仿真已经足够了。但是,对于吉比特级的系 统,特别是对于那些数据率超过了5Gbps的信号,电路板和封装的细微结构造成的不连续性将显著影响信号的质量,这将引起眼图的闭合并带来不可接受的误码 率。因此,对于吉比特级系统的分析,需要引入三维电磁场全波分析技术。
CST印制板工作室
CST 印制板分析软件基于积分方程和边界元(BEM)的算法,能快速准确地从PCB结构得到电路仿真用的传输线电路(TLC)模型及部分元件等效电路 (PEEC)模型,可以输出标准SPICE集总模型(R,L,C,G)或者SPICE分布模型(Z,V,T)以及特殊的仿真模型(比如:HSpice W-model)。 使用软件内建的功能强大的二维场求解器以及高级网络仿真器,可以非常容易地处理任何类型的EMC问题。内置的仿真器会自动考虑趋肤效应、介质损耗。
此外,CST印制板分析软件还将产品公差分析或电介质完全地考虑到诸如信号完整性、辐射或串扰等EMC计算中。其高效的内核可以分析从非常小的结构(比如:单一信号线)到复杂整板。
求解原理及优点:
CST 印制板分析软件是为满足行业用户对于电磁兼容性、信号完整性和功率完整性效应的建模和仿真而开发的复杂印制板系统分析软件。它为业界提供了完整的PCB板 级、部件级及系统级的电磁兼容性、信号完整性及功率完整性分析解决方案。可以分析单层、多层复杂PCB板的信号完整性(SI)、电源完整性(PI)、 PCB板对外的辐射及外界环境对PCB板的影响等等,还可以给出整板的电流分布和SPICE模型等。软件主要功能特点如下:
(1)、时域及频域算法;
(2)、2D边界元法(BEM)和2.5D部分单元等效电路法(PEEC)提取Layout的分布参数网络模型;
(3)、基于SPICE模型快速仿真包含走线、无源RLC器件、IC模块及各类非线性器件整板的信号完整性和各器件上的电压和电流,并得出PCB板上的电流幅相分布;
(4)、将PCB上电流导入CST MWS或CST MS进行包含有机箱机壳等整个系统环境下的电磁辐射仿真;
(5)、与CST MWS或CST MS联合完成在整个系统环境受到外界电磁辐照时PCB板上的感应电压和电流。
HyperLynx
HyperLynx SI提供三维电磁场建模与仿真功能,在Linesim中集成HyperLynx 3D EM三维电磁场仿真引擎,能够在“前端”实现三维过孔物理结构电磁建模 ,提供Boardsim与HyperLynx 3D EM的接口,能够提取复杂PCB结构的3D模型,从而实现精确的三维电磁场建模与仿真。
随着射频应用频率和速率越来越高,以及计算机技术的发展,早期的2D求解器基本不能满足现代产品的设计需要,大部分商业软件都会采用全波3D算法,这是一个 趋势。总的来说,没有一个求解器或软件适合所有应用,应该针对不同结构和电路特点选择。选择一个求解器和仿真软件,除了考虑求解对象几何维度,还行确认那 些特殊效应需要仿真
|
|