1 连杆组成及断裂故障情况 某柴油机连杆由连杆体(1)和连杆盖(3),通过配合面的齿形定位,经两个螺钉(2、4)连接固定而成。连杆断裂出现断裂故障时,相关柴油机累计运行时间长短不等,既有380 多小时的,也有1100 多小时的,断裂部位集中在图上箭头所指的连杆体大端螺钉孔底部附近。经复查运行记录,相关柴油机基本上是在20%~30%负荷下发生故障。 2 材质复查及分析 该型连杆体材质为42CrMoA 锻件,经机加成型。为此,对照图纸及有关技术文件,首先对断裂连杆进行了化学成分、力学性能、金相组织、冶炼夹杂物等都进行了复验,全部满 足相关标准和技术要求。由此可以基本排除连杆是由于材质不合格导致了断裂。 3 断口分析 3.1 宏观分析 如前所述,疲劳断裂的根连杆体都在大端的螺纹孔处断裂。 所示是断裂连杆典型的断口实物照片。从中可以清楚看出,断口没有明显的塑性变形,断面平坦,可观察到清晰的贝纹线状疲劳扩展痕迹,疲劳扩展深度达总断面的80%以上。从断口的贝纹状疲劳花纹可以判断,连杆起裂于螺纹底孔圆柱面与圆锥面过渡处。 3.2 微观分析 为深入分析连杆断裂的具体原因,我们对断裂连杆的断口进行解剖和微观形貌观察。 在扫描电镜,断口的高倍形貌特征非常明显,可以看出裂纹源区存在明显的加工刀痕,且裂纹源起源于刀痕,并沿刀痕底部生成;疲劳扩展区有明显的海滩标记,可以清楚看到疲劳辉纹及二次裂纹;剪切区高倍下位剪切韧窝特征。 3.3 螺纹孔底部形貌观察 为了探究螺纹孔的加工质量,沿螺纹孔中心线剖开连杆,扫描电镜下直接观察螺纹孔的机加工表面微观变形。 螺纹孔表面的机加工刀痕较为清晰细密。裂纹底孔圆柱面与锥面的过渡表面呈折线状,未发现微裂纹等缺陷,但局部表面加工较为粗糙,有V 形尖槽和台阶突起。 4 连杆加工工艺复查及分析 由于故障机断裂连杆的疲劳源均为螺纹底孔柱面与锥面交叉处,从关联性考虑,对连杆加工工艺进行排查分析,特别是螺纹底孔加工工艺进行了排查。结果表明,连杆加工各过程记录清晰、完整、有效,但也有了新的发现。 该型连杆杆身两侧的螺纹孔为M16×1.5,左侧为通孔,出口为斜面,右侧为盲孔。 工厂原采用传统加工工艺,即在摇臂钻床上使用钻模和高速钢麻花钻头钻螺纹底孔,最后用丝攻攻丝。 后改为卧式加工中心加工,先用高速钢麻花钻头钻螺纹底孔,再用镗刀来校准底孔坐标位置,最后用标准丝攻攻丝。 仔细对比新老工艺,我们发现其在两个方面存在差异: 一是加工通孔时,出口为斜面,钻头钻透时会单边受力,存在抗刀、断续切削现象,切削刃可能会发生微小损伤。用卧式加工中心加工时,换工步不换零件,通孔和盲孔使用同一刀具,如刀具磨刃不及时,受损的钻头在钻盲孔时会在底部造成局部撕裂和不连刀痕。 二是卧式加工中心加工时是自动进刀和刚性进给,加工到尺寸后在孔底无停留,直接退刀,对孔底刀痕没有挤压、光整;老工艺摇臂钻床钻孔到底部手动进刀,切削惯性使得在底部柔性进给,刀具对底孔会有一定的挤压和光整过程,底孔表面过渡平滑。 为进一步验证不同工艺对螺孔底部裂纹产生的影响,我们分别抽取了新老工艺两种状态的连杆进行解剖检查,结果发现老工艺5 根连杆螺纹底孔均未发现裂纹;新工艺的9 根连杆中有3 根连杆在螺纹底孔发现裂纹。 在高倍显微镜下还发现如下对比特征: 新工艺连杆盲孔(上)加工较直,但表面呈现锯齿状形貌,刀痕不连续,有较多的凹坑和凸起,盲孔孔底有台阶,试样浸蚀后观察,盲孔表面加工形变痕迹不明显; 老工艺试样加工线条(下)虽呈波浪形,但加工表面较平滑,孔底未发现明显的加工台阶,浸蚀后观察,加工表面有厚度0.03 mm 左右的形变层。 5 结论 通过全面的材质复查和宏微观断口分析,可知断裂连杆材质满足要求,运行中也无超负荷情况存在,其断裂属于疲劳断裂,且断裂裂纹起始于连接螺纹孔底部微小加工缺陷[3]。螺纹底孔微小加工缺陷与加工工艺变化有关: 1) 采用老工艺加工连杆螺纹底孔时,钻头由人工操作,到达底面时有停顿,表面会形成硬化层。该硬化层能够提高螺纹孔的抗疲劳强度。采用新工艺加工时,钻头达到螺纹底部时自动退刀,表面没形成硬化层。 2) 采用老工艺加工的螺纹底孔表面过渡圆滑、连续;采用新工艺加工的螺纹底孔表面相对光滑,但加工刀痕不连续,有龟裂状横纹,对连杆抗疲劳能力有一定影响。 3)采用老工艺加工的螺纹底孔在圆柱面与锥面过渡区域过渡平滑,可以使应力分布较为均匀;采用新工艺加工的螺纹底孔在圆柱面与锥面过渡区域比较尖锐,容易形成应力集中。
|