其实最早 ChatGPT 发布时,大家对大模型直接作为服务被调用的商业模式有很大期待。毕竟,与上一波 AI 烟囱式的项目交付方式相比,大模型带来了更通用的 AI 能力,作为标准化服务被调用,道理上也说得通。
就拿 OpenAI 来说,有两大商业化手段,一是像 ChatGPT Plus 20 美元/月这样的会员订阅模式,另一个是开发者 API 调用服务。在这两大标准化服务的拉动下,2023 年 12 月 31 日,The information 爆出 OpenAI 的年度经常性收入(Annual Recurring Revenue,ARR)已经达到了 16 亿美元。
但即便强如 OpenAI 的模型能力,这个体量的营收相比其百亿美金级别的研发成本而言,目前看也还是杯水车薪。
事实上,只提供模型的 API,距离 AI 应用在场景中落地还有很大距离,大部分 AI 应用还需要在一个通用的模型 API 之上,在场景里喂数据、做微调等来优化模型引擎。看到这一瓶颈后,国内大模型厂商在过去一年也做了一系列探索来降低 AI 应用的门槛,以期扩大大模型的调用量。
尽管模型厂商做了很多尝试,但标准化的模型 API 并没有迎来确定性的增长。
这是本周大厂模型推理价格降低的大前提和背景。理解了模型 API 调用的需求现状,也就不难理解这一波降价动作——降价并没有真的损失多少收入,不如激活下市场,赚个吆喝,促进很多企业从「免费试用」开始下水,早点启动对 AI 进入业务流的尝试。
对于各家不同的降价策略,已经有一些质疑声音称一些降价的模型本身吞吐量就低,而高性能模型并没有降价。并且还有很多细节条款会让最终企业用起来没有宣传的那么便宜,从这个角度看,降价更多是模型厂商出于市场和品牌的考量,进行的一波内卷。
一位 SaaS 厂商创始人向极客公园表示,「对我来说用谁的其实无所谓,因为他们最后跑得都差不多,当把时间线拉长来看,最后这些厂商提供的模型 API 服务,99.9% 的概率跟今天的云是差不多的概念。另外,如果一个通用的模型 API 无法深度适配场景,还是要自己基于开源模型,用场景数据做专门的深度训练,也不会接通用的模型 API。」
最终的的客户需求,其实是端到端的诉求,是可以用、可以看到效果的东西,而不是模型调用。
模型技术的攀升,才是 API 调用商业模式能继续增长的前提。其实细看今天宣布降价的模型产品也是一样,真正大规模、高性能、支持高并发的模型推理还是要收费,降价幅度是有限的。
但长期来看,API 模式最终考验的还是模型能力,如果技术拉不开差距,价格也一定拉不开差距,最终模型调用的价值会被稀释,虽然依旧是重要的基础设施,但价值大小就从油变水了。
换一个角度看,今天一个通用的模型 API 可能不是迫切的需求。就像 Lepton.ai 的创始人贾扬清在朋友圈表达的观点,「站在整个 AI 业界的角度我想说,降价是个拍脑袋就可以做的简单策略,但是真正的 To B 商业成功更难。」今天企业在使用 AI 的时候,并不是成本驱动的,「今天不是说 API 贵才没有人用,而是因为要搞清楚,到底怎么用起来产生业务价值」。
从这个角度看,如何把大模型能力推动到企业的业务里的很大一部分任务,可能又回落到传统 SaaS 厂商(用 AI 升级产品之后)手里,需要他们作为智能生产力的「干线物流」+「前置仓」,输送到各个场景中。
随着模型 API 直供模式的高度内卷,巨头其实已经在向能交付价值的 SaaS 看,微软今天宣称 GitHub Copilot 订阅者已经有 180 万付费用户。谷歌近日也正在与 CRM 营销巨头 Hubspot 谈高达 300 亿美金收购可能性,因为前者可能会利用这次收购来加强其在 AI 领域产品整合。
对于巨头而言,模型技术和实际场景,两个都要抓,才能有规模化的收入。但归根结底,模型能力和别人拉开距离,才是 API 模式可以产生价值的「华山一条路」的挑战。
智能的能力不会是免费的,但是怎么规模化的创造价值,巨头和创业公司,都还在寻找答案。