机械荟萃山庄

 找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
热搜: 活动 交友 discuz
查看: 193|回复: 0

Nature:大模型越大越不可靠

[复制链接]

2万

主题

2万

帖子

17万

积分

超级版主

Rank: 8Rank: 8

积分
176327
发表于 2024-9-28 10:01:54 | 显示全部楼层 |阅读模式
日前,一项发表在权威科学期刊 Nature 上的研究表明:相比于小参数模型,大参数模型不会承认它们的“无知”,而更倾向于生成错误答案。
值得关注的是,人们并不善于发现这些错误。这项研究来自瓦伦西亚理工大学团队及其合作者,他们在研究了 GPT、LLaMA 和 BLOOM 系列大语言模型(LLM)之后发现——
尽管正如预期的那样,由于一些微调方法(如 RLFH),参数规模更大的 LLM 生成的答案更准确,尤其是在复杂任务上,但整体可靠性却较低。
在所有不准确的回答中,错误回答的比例有所上升,甚至在一些简单任务上出现更多低级错误。例如,GPT-4 在处理简单的加法和字谜时的错误率竟比一些小模型高出 15%。这是因为模型不太可能回避回答问题——比如承认它不知道或者转移话题。
以上结果表明,大参数模型在简单任务上可能会出现过度拟合或错误估计的风险,反而更不可靠。
在这项工作中,研究人员从人类用户与 LLM 互动的角度,探讨了难度一致性、任务回避和提示稳定性三个核心交织元素对 LLM 可靠性的影响。
该研究的通讯作者 José Hernández Orallo 教授表示:“语言模型的可靠性与人类对任务难度的感知不匹配。模型能够解决博士级的数学问题,但同时却可能在简单的加法上出错。”
研究团队对比了 GPT、LLaMA、BLOOM 三大模型系列在不同任务中的表现,尤其是在数字计算、文字游戏、地理知识、基础与高级科学问题和信息转化等任务。通过对这些任务的正确率、错误率和回避行为的分析,揭示了模型扩展带来的能力反差现象。
一个令人意外的关键发现是,模型在面对复杂任务时表现显著提升,但在简单任务上的错误率却有明显上升。这种现象称为“难度不一致(Difficulty Inconsistency)”,即扩展后的模型在复杂任务上逐步提升了正确率,但在简单任务上却容易出错。
以加法任务为例,虽然模型能够解决复杂的多位数加法,但在简单的两位数加法上却频繁出错。例如,所有 LLaMA 模型在最简单任务上的正确率未超过 60%,而在一些较难的任务中,则表现得相对出色。
这一现象在 GPT 模型中也尤为突出,特别在处理诸如简单加法和字谜任务时,优化后的模型反而容易给出错误答案。研究团队指出,这一现象表明当前模型的扩展可能过于集中于复杂任务,而忽视了简单任务。
这一结果颠覆了人们对 LLM 的传统认知,表明扩展模型并不总是能带来全面的提升,对其在实际应用中的可靠性提出了质疑。
全球大模型在电机磁极对数和同步转速的关系计算公式集体犯蠢就是明证。
相关帖子http://jixietop.top/thread-58434-1-1.html    http://jixietop.top/thread-58480-1-1.html

除了难度不一致现象,研究还揭示了优化后模型中回避行为与错误率之间的微妙关系。
回避行为是指模型在无法正确回答问题时,选择不作答或给出不符合要求的回应。
在模型未优化时,回避行为比较常见,即当模型不确定答案时,往往会选择“不作答”或提供模糊的回应。然而,在经过扩展和优化后,模型则大幅减少了回避行为,转而给出了更多表面上“合理”但实际上错误的答案。
这意味着,虽然一些优化方法使得模型更“自信”,减少了回避行为,但错误率却随之增加。这一现象在 GPT-4 和 GPT-3.5-turbo 等模型中尤其明显,规模扩展并未带来预期的稳定性。对比 LLaMA 和 BLOOM 模型,这一趋势虽然不那么明显,但同样存在。
研究团队称,这种现象与用户在模型上产生的过度信任密切相关,尤其是在用户面对看似简单的任务时。
该论文的第一作者 Lexin Zhou 表示:“这可能会导致最初过于依赖模型的用户感到失望。此外,与人类不同,避免提供答案的倾向不会随着困难而增加。例如,人类倾向于避免对超出其能力的问题给出反馈。这让用户有责任在与模型的交互过程中发现错误。”
该研究分析了模型对提示词的敏感性,特别是某些提示是否存在“安全区”。
结果表明,随着模型规模的增加,模型对不同自然语言表述的敏感度有所提高,能更好地应对措辞上的微调。然而,即使经过扩展和优化,模型在不同难度级别的任务上仍然存在不一致的表现。而且,在不同表述下,模型的回答准确率存在波动。
研究发现,人们对难度的认知存在不一致。论文作者之一 Yael Moros Daval 说道:“模型是否在我们预期的地方失败了?我们发现,模型在人类认为困难的任务上往往不太准确,但即使在简单任务上,它们也不是 100% 准确。这意味着不存在可以信任模型完美运行的‘安全区’。”
具体而言,未经优化的 GPT 和 LLaMA 模型对提示词的选择表现出极高的敏感性,尤其是在简单任务中。如果提示词选择得当,模型的表现会有所提升;而优化后的模型在提示词敏感性上有所改善,表现更加稳定,但也存在一定的变异性。
经过优化的模型相比原始模型(raw models)在提示变化上更为稳定,且正确率更高,但在与人类判断难度的一致性和谨慎度方面表现较差。
研究发现,当用户的难度预期与模型的输出结果不一致时,尤其是对于简单任务,模型和用户的错误监督都会增加,且人类监督无法弥补这些问题。
尽管人类对任务难度的预期可以作为模型正确性的预测指标,但模型在简单任务上仍存在错误;模型规模的扩展和优化不仅减少了回避行为,还导致错误率的增加,并且回避行为与任务难度无关;即便对模型进行了扩展和优化,提示工程的需求仍然存在,并且提示性能的提升并不随难度单调增加。
这项研究不仅揭示了大模型扩展的关键盲区,更为未来的 AI 发展提供了新的方向——在模型规模与任务难度之间找到最佳平衡,或许才是智能进化的真正关键。
论文作者之一 Wout Schellaert 表示:“最终,从人类的角度来看,LLM 变得越来越不可靠,而用户监督来纠正错误并不是解决方案,因为我们往往过于依赖模型,无法识别不同难度级别的错误结果。因此,通用人工智能(AGI)的设计和开发需要进行根本性的改变,特别是对于高风险应用,预测语言模型的性能并检测其错误至关重要。”

提问“离心泵的计算选型是遵守相关国家标准吗?” 通义大模型的回答,标准名称胡说八道,标准号上的胡说八道。
JB/T8097-1999 《泵的振动测量与评价方法》而不是热水循环泵 技术条件,版本号也不对,更新到2013版的是JB/T8096渣浆泵标准。
JB/T6878-2006《管道式离心泵》而不是高温离心泵 技术条件
GB/T 3216-2016,不是2005版
GB/T 10886-2019 《三螺杆泵》而不是离心泵 技术条件 第1部分,同时标准也没有.1的分支章节。
与离心泵技术条件有关的标准是GBT16907—2014离心泵技术条件(Ⅰ类)
GB/T 5656-2008离心泵 技术条件(Ⅱ类)
而那个阀门技术条件标准也与主旨无关,问的是离心泵。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

x
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|小黑屋|手机版|Archiver|机械荟萃山庄 ( 辽ICP备16011317号-1 )

GMT+8, 2024-12-24 08:07 , Processed in 0.096275 second(s), 20 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表