|
|
提问

让中外大模型来回答如何解决:
豆包大模型的回答
针对这个不锈钢零件内螺纹孔的毛刺问题,推荐从源头减少毛刺 + 精准后处理两个方向解决,具体方案如下:
一、从攻丝环节源头减少毛刺(优先方案)
用挤压丝锥替代切削丝锥,从根本上减少毛刺产生:
原理:挤压丝锥是通过 “塑性变形” 挤压出螺纹,无切削屑,因此不会产生切削类毛刺(仅可能有极轻微的变形飞边,远少于切削丝锥)。
适配性:不锈钢(如 304/316)具备足够塑性,适合挤压攻丝;需注意匹配挤压丝锥对应的底孔尺寸(比切削丝锥底孔略大,需查对应螺纹的挤压底孔表)。
二、若仍有轻微毛刺,针对性后处理
针对 0.5mm 狭小空间,用电化学去毛刺:
原理:利用电化学反应,仅溶解螺纹口的微小毛刺(毛刺尖端电流密度高,优先被溶解),不会损伤螺纹和侧壁。
优势:适配狭小空间,自动化程度高(批量生产可配专用夹具),毛刺去除彻底且不影响零件精度。
三、辅助优化(减少毛刺生成量)
攻丝时配合不锈钢专用极压切削液+优化攻丝参数(降低转速、匹配合适进给),进一步减少毛刺的初始生成量。
智谱大模型的回答
一、优化攻丝工艺(从源头减少毛刺)
使用挤压丝锥:
挤压丝锥通过塑性变形形成螺纹,而非切削,可大幅减少毛刺产生。需确认M6螺纹孔的预孔尺寸是否适配挤压丝锥(通常预孔直径略小于切削丝锥),避免因预孔过大导致毛刺。
优化切削液:
采用含硫或氯的不锈钢专用切削液,增强润滑和排屑能力,减少攻丝时的摩擦和毛刺形成。
锋利丝锥与低速攻丝:
使用新磨锋利的丝锥,降低攻丝转速(如常规转速的70%),减少切削力,避免毛刺撕裂。
二、高效去毛刺方法(针对残留毛刺)
磨粒流去毛刺(推荐):
原理:将碳化硅磨料与流体混合,通过高压喷射至螺纹孔口,利用磨料研磨去除毛刺,不损伤螺纹精度。
优势:适用于微观毛刺,360°无死角处理,尤其适合小间距孔口(0.5mm间距不影响磨料进入)。
实施:需购置磨粒流设备(如专用喷嘴和高压泵),选择合适磨料(如120-240目碳化硅),调整压力和流速,确保磨料充分接触孔口。
内孔刷+高速电主轴(低成本方案):
工具:日本锐必克陶瓷纤维研磨刷(最小直径1.5mm,适配M6螺纹小径5mm),配合RBZ高速电主轴(转速≥20000转/min)。
操作:将研磨刷装入电主轴,对准螺纹孔口,低速旋转(避免过切),来回刷动去除毛刺。需注意刷子磨损后及时更换。
浮动主轴去毛刺(自动化方案):
设备:日本NAKANISHI浮动主轴(如NR3060-AQC,精度1μm),加装在机械臂末端,实现柔性去毛刺。
优势:可沿工件轮廓自适应,避免过切,适合批量生产,尤其适合0.5mm小间距的精密孔。
三、设计优化(若允许修改零件)
若生产条件允许,建议将螺纹孔位置向内移动1-2mm,增加侧壁间距至1.5mm以上,使倒角钻头或锪刀能进入,从根本上解决毛刺问题。此方案需评估零件功能是否受影响。
Gemini3的回答
This is a classic "tight clearance" machining challenge. With only 0.5 mm between the thread's major diameter and the vertical wall, a standard 90° chamfer drill or countersink will almost certainly collide with the shoulder before it can effectively clear the burr. Stainless steel's toughness and tendency to work-harden make the burrs even more stubborn.Since quality inspection is now strict, you need a process that is repeatable and doesn't rely on manual "scraping" which often leaves secondary burrs.Here are four professional solutions ranging from tooling changes to finishing processes: 1. CNC Circular Interpolation (Micro-Chamfering)Instead of using a stationary countersink tool that plunges vertically, use a small-diameter micro-end mill or a tapered neck chamfer mill.The Method: Choose a tool with a shank diameter significantly smaller than the hole. Program the CNC to perform a circular interpolation (an orbital path) around the hole entrance.Why it works: Because the tool's diameter is small, the "trailing edge" of the tool holder will clear the 0.5 mm wall while the cutting tip creates a precise 45° or 30° micro-chamfer.Tool Suggestion: Look for "Long Neck" or "Under-neck" micro-end mills. 2. Ceramic Fiber Brushes (e.g., Xebec)Ceramic fiber brushes are the industry standard for removing burrs from stainless steel internal threads without changing the part's dimensions.The Method: After tapping, use a ceramic fiber "cross-hole" brush or a surface brush on a high-speed spindle.Why it works: The fibers act like a flexible cutting tool. They are stiff enough to snap off the burr at the root but flexible enough to not gouge the side wall. They are particularly effective on stainless steel (304/316).Benefit: It produces a consistent, polished edge that passes strict visual inspections. 3. Change the Tapping SequenceIf your current process is Drill → Tap → Deburr, the tap is pushing material back up, creating the burr. Try this "Sandwich" method rill the hole.Chamfer the hole (before tapping) using a small interpolated tool as mentioned in Step 1.Tap the hole.Re-run the Chamfer tool at a very light depth (0.02 mm) to "skin" the thread start.Result: By pre-chamfering, you provide a "valley" for the tap to exit into, which significantly reduces the volume of the burr. 4. Electrochemical Deburring (ECD) or ElectropolishingIf the volume is high and manual/mechanical deburring is too slow, consider an electrochemical approach.Electropolishing: Submerging the part in a chemical bath with an electrical current. It preferentially attacks "high spots" (burrs) and dissolves them first.Why it works: It reaches areas where mechanical tools cannot. It will not only remove the burr but also improve the overall surface finish ($N6$) required by your drawing.Constraint: This is usually outsourced or requires a specific tank setup.
挤压丝锥通过塑性变形来加工螺纹,这一过程会导致孔口处的金属向上并向外位移,形成一圈凸起。
由于仅有0.5 mm的间隙,这种凸起因为空间所限,只会加剧凸起。
由此可见豆包大模型和智谱大模型根本没看懂图,或者说从二维图扩展到三维空间的联想能力不足。
而磨粒流的无差别研磨会因介质渗入螺纹孔内部,造成牙顶磨损、螺纹尺寸超差,导致通止规无法通过。
而Gemini3的回答则非常具有可行性,同时又没有提及挤压丝锥加工和磨粒流。
|
|